ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ МОРСКОГО ЛЬДА СРЕДСТВАМИ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ

<u>Кустова Е.В.</u>¹, Лазарюк А.Ю.¹, Харламов П.О.², Тювеев А.В.³, Мельниченко Н.А.⁴

¹Тихоокеанский океанологический институт РАН имени Ильичева, г. Владивосток, lazaryuk@poi.dvo.ru, kustova e@poi.dvo.ru,

²Дальневосточный региональный научно-исследовательский

гидрометеорологический институт, г. Владивосток, pkharlamov@ferhri.ru,

³Владивостокский государственный университет экономики и сервиса, г. Владивосток, anton.bdk@gmail.com,

⁴Дальневосточный федеральный университет, г. Владивосток, о. Русский, п. Аякс melnichenko.na@dvfu.ru

Для изучения преимуществ и недостатков применения средств компьютерной томографии (КТ) к определению плотности морского льда были отобраны 4 керна льда Амурского залива зимой 2021 г.: два керна 4 февраля в точке T4 (и T4b) на расстоянии не более 100 метров друг от друга; два керна 2 марта в точках Т5 и Т21, отстоящих друг от друга более, чем на 9 км. Кроме того, точка T21 расположена в области влияния стока реки Раздольной (точки являются станциями гидрологического разреза). Т.о., в первом случае образцы представляли собой лед, образовавшийся и существовавший в схожих условиях, а во втором — в максимально различных. Диаметр кернов составил 16 см, что уменьшило вероятность извлечения образца без солевых каналов вследствие их неравномерного распределения во льду [1]. Кроме того, на каждой станции так же извлекался дополнительный керн для получения профиля температуры льда (через 5 см, считая от верхней поверхности керна) при помощи цифрового измерителя температуры IT-7Pt-2 (погрешность ±0,2 °C), и, в дальнейшем — профиля солености при помощи проточной системы зонда SBE-19 (точность определения солености $\pm 0,1$ *psu (practical salinity units)*) уже в лабораторных условиях.

Полученные керны были доставлены в медцентр Профи-Клиник (г. Владивосток) упакованными в толстый полиэтилен и термоизоляционный контейнер, в горизонтальном положении для предотвращения вертикального стока рассола. Там керны были помещены в 64-срезовый мультиспиральный томограф SIEMENS Sensation 64 (источник рентгеновского излучения был установлен на 120 кВ и 255 мА для февральских кернов и на 80 мА для мартовских). Сканирование происходило при комнатной температуре (керны оставались запакованными в полиэтилен) и занимало не более 15 с. Толщина аксиальных срезов была установлена 1 мм, расстояние между срезами — 0,7 мм. Февральские керны были помещены в томограф параллельно, мартовские — последовательно. Как видно из табл.1, разрешение полученных в феврале снимков гораздо меньше. Однако, несмотря на это, мода гистограмм этих кернов не отличается от моды гистограмм изображений мартовских кернов (-72 HU, что приблизительно соответствует веществу плотностью 0,926 Мг/м³), а формы гистограмм аналогичны, что указывает на возможность проведения сравнительного анализа полученных результатов.

Таблица 1. Характеристики кернов и параметры полученных изображений.

Стан- ция	Рассто- яние от берега, м	Толщи- на льда, см	Темпера- тура воз- духа, °С	Размер пикселя, мм	Принятый объем вок- селя, мм ³	Количество эффективных срезов
T4	1350	45	-11,5	0.820	0.492	600
T4b	1450	49	-12,7	0,830	0,482	652
T5	2050	52	-6,9	0.420	0.120	676
T21	11100	75	-5,9	0,429	0,129	1033

Плотность вещества на полученных изображениях рассчитывается из единиц Хаунсфилда (HU) согласно линейной зависимости, полученной по данным, приведённым в [2]:

$$\rho = 0.9747 \cdot HU + 998,7337 \tag{1}$$

Для сравнения использовались так же теоретические расчеты плотности льда. По формуле Швертдфегера [3] плотность морского льда составляет:

$$\rho = \left(1 - \frac{V_a}{V}\right) \left(1 - \frac{4,56 \cdot S_i}{T}\right) \cdot 0,917 \tag{2}$$

Формула применима в диапазоне температур льда выше -8,2°С, плотность для льда со средней температурой -5,5 °С и средней соленостью 5 ‰ предлагается принять 0,915 Мг/м³, а соленость льда в формуле указана в долях.

По формуле Кокса [4] плотность морского льда:

$$\rho = \left(1 - \frac{V_a}{V}\right) \frac{\rho_i F_1(T)}{F_1(T) - \rho_i S_i F_2(T)}$$
(3)

где для расчетов было использовано $\rho = 0,923$ Мг/м³, $\rho_i = 0,917 - 1,403 \cdot 10^{-4} \cdot T^{\circ}C$ Мг/м³, значения F_1 и F_2 рассчитывались по температуре льда с использованием коэффициентов, представленных в [3], *S*. – соленость льда в ‰, в данной работе для расчета использовались *psu*.

Содержание воздуха $\frac{V_a}{V}$ для обеих формул было взято из результатов, полученных для КТ-изображений, т.к. формулы содержания воздуха

в морском льду и его плотности у обоих авторов являются взаимозависимыми.

При расчетах по КТ-изображениям, с целью уменьшить влияние возможных потерь рассола при извлечении и транспортировке, были выделены две области исследования: диаметром 13 см (d = 13 см на рисунках, пунктирная линия) — чтобы обрезать края, где могли образоваться каверны и произойти сток рассола в связи с механическими повреждениями каналов, расположенных у края, и диаметром 7 см (d = 7 см на рисунках, сплошная линия) — захватывая, т.о., только центр изображения керна. Расчеты были произведены для обеих областей каждого керна. При осреднении на весь керн видно, что разница между средней плотностью всего керна и его центральной части составляет до 0,005 Мг/м³ (см. табл. 2).

Керн	Средняя	Средняя соленость льда, psu	Средняя плот-		Средняя плот-		Средняя плотность	
	темпе-		ность льда по КТ, Мг/м ³		ность льда по		по льда Швердтфе-	
	ратура				Коксу, Мг/м ³		геру, Мг/м ³	
	льда, °С		d=13 см	d=7 см	d=13 см	d=7 см	d=13 см	d=7 см
T-4	-5,2	6,4	0,923	0,924	0,916	0,917	0,911	0,912
T-4b	-5,8	6,5	0,926	0,927	0,919	0,919	0,914	0,914
T-5	-3,2	5,2	0,925	0,929	0,918	0,920	0,914	0,916
T-21	-2,8	4,6	0,913	0,918	0,905	0.909	0,902	0,906

Таблица 2. Результаты расчета плотности морского льда

Разница между результатами расчетов по КТ-изображениям и по формулам (2, 3) составляет (см. табл. 2) от 0,007 Мг/м³ до 0,013 Мг/м³, при этом разница с результатами расчетов по формуле Швердтфегера больше, чем по формуле Кокса. Профили плотности льда, полученные тем же образом, что и плотность для всего керна, показывают, что результаты, полученные по формулам (2, 3), в основном ниже результатов, полученных при прямом расчете по КТ-изображениям (рис. 1). Максимальные разницы между ними составляют 0,012-0,016 Мг/м³, и наблюдаются в верхних слоях кернов морского льда при расчетах по формуле (2). Также можно заметить обратную картину, когда плотности, полученные при расчетах по формулам, превышают плотность льда, полученную по результатам КТ-исследования. Такие случаи наблюдаются в самых нижних слоях кернов Т4b и T21, а также в центральной части керна T21 при Рис. 1. Профили плотности льда, рассчитанные по формулам (2, 3) с и с пользованием натурных данных, и полученные по результатам КТ-исслелования

сравнении с расчетами по формуле (3). Это, предположительно, является следствием стока рассола в процессе извлечения и транспортировки кернов, а также (в случае с керном T21) результатом выхода физических параметров керна льда за пределы применимости формулы (3).

Работа выполнена в рамках госбюджетной темы № 121021700346-7 «Исследование основных процессов, определяющих состояние и изменчивость океанологических характеристик окраинных морей Азии и прилегающих районов Тихого и Индийского океанов».

Литература

- Cottier F., Eicken H., Wadhams P. Linkages between salinity and brine channel distribution in young sea ice // Journal of Geophysical Research: Oceans. 1999. T. 104. №. C7. C. 15859-15871.
- Хофер М. Компьютерная томография: базовое руководство: Пер. с англ. / Под ред. Г.Е. Труфанова. М.: Мед, лит. 2006. 367 с.
- Schwerdtfeger P. The thermal properties of sea ice // Journal of Glaciology. 1963. T. 4. № 36. C. 789-807.
- Cox G.F.N. and Weeks W.F. Equations for determining the gas and brine volumes in sea-ice samples // J. Glaciol. 1983. 29(12). P. 306-316.