

Леонид Моисеевич Митник 10.10.1938

Научная сессия 10-11.10.2018

"Дистанционное зондирование океана: современное состояние и знаменательные даты"

Динамические характеристики поверхности океана по спутниковым данным ТПО

> Алексанина М. Г., Загумённов А. А. margeo@mail.ru Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук 600041, г. Владивосток, ул. Радио-5

Динамика поверхности океана через температуру поверхности

На спутниковых ИК (инфракрасных) изображениях объекты **океанской циркуляции** - вихри, струи и фронты ярко проявляются в поле поверхностных температур.

Задача состоит в создании **методов** выделения, прослеживания и оценки динамических характеристик на поверхности моря

Композиционные карты ТПО

– информационная основа мониторинга океана

робастное значение ТПО

Ттах = медиана(T|_{Hsun > 0^e и Hsun < 25^e) Если наблюдаемое днем значение ТПО значительно превосходит Tmax + ΔT – значение отфильтровывается}

(∆T = 2ºK)

Построение картыэталона ТПО

Т эталон^{х,у} =

медиана(T^{x,y,t}(R(x,y,x0,y0) < ΔR), ΔR=7км Построение карты пространственной изменчивости:

Т_{простр изм} (х_о,у_о)= (Квантиль75-Квантиль25)

 $(T^{x,y}, R(x,y,x_0,y_0) < \Delta R),$ $T^{x,y} = Медиана(T_{x,y,t}, t in (0,N))$ Построение карты временной изменчивости:

Т_i = медиана(Т^{x,y,t}(R(x,y,x0,y0) < ΔR, t=i),

Т_{врем изм}= Квантиль75(t_i, i in [0.. max_i]) —

Квантиль25(t_i , i in [0 .. max_i])

Фильтрация данных:

Точка отбрасывается если её восстановленное значение ТПО в точке не принадлежит промежутку

[Тэталон - 2*(Т_{простр изм} + Т_{врем изм}) ...Тэталон + 2*(Т_{простр изм} + Т_{врем из})]

Сопоставление результатов с картами, построенными по технологии <u>G1SST (JPL NASA)</u>

Временная композиционная карта ТПО NASA за 2013.03.15 (http://ourocean.jpl.nasa.gov/SST/)

Временная композиционная карта ТПО за 2013.03.15 (Спутниковый центр ДВО РАН в ИАПУ –СЦ ДВО РАН)

Мгновенная карта ТПО за 2013.03.15

Карта пространственновременной изменчивости ТПО

- 1.00

0.50

Оригинальные технологии Спутникового Центра ДВО РАН на основе ТПО

ТПО-1	•построение композиционных карт температуры поверхности океана ТПО		
ДОТК	•Построение структурных карт ТПО в форме доминантных ориентаций термических контрастов (ДОТК)		
Вихри	•Технология автоматического выделения синоптических вихрей океана по картам ДОТК с расчетом положения, формы, размеров вихрей		
Скорости	•Технология расчета скоростей течений на основе автоматического прослеживания термических неоднородностей		
Динамическая топография	•Технология восстановления уровенной поверхности моря		
Дрейф льда	•Расчет скоростей дрейфа льда по данным ИК, видимого диапазонов и пассивного микроволнового зондирования		
Сжатие льда	•Расчет характеристик сжатия льда по скоростям дрейфа		

Пространственная структура ТПО определяется сдвиговым характером течений

Конкретный вид термической структуры определяется сдвиговым характером течений - изменчивостью скорости поперек потока. Это приводит к вытягиванию термических контрастов вдоль потока.

ДОТК - доминантные ориентации термических контрастов

<u>Поле яркости</u>

$$\{I_{ij}\}, ij \in a \times a$$

$$\downarrow$$

$$Ione cpaduenmos apkocmu$$

$$\{G_{ij}e^{i\phi_{ij}}\}, \phi_{ij} \in [-\pi, +\pi]$$

$$a^{2}$$

$$G_{x}=\{\sum_{i} [I_{i+a/2,j+d} - I_{i-a/2,j+d}]\}/a$$

$$a^{2}$$

$$G_{y}=\{\sum_{i} [I_{i+d,j-a/2} - I_{i+d,j+a/2}]\}/a$$

$$\downarrow$$

$$Ione opuenmauuŭ kommpacmos$$

$$\{K_{ij}e^{i\partial ij}\},$$

$$\partial_{ij} = \phi_{ij} - \pi/2 :$$

$$\partial_{ij} \in [0, +\pi]$$

$$\downarrow$$

$$Ione domunanmutix opuenmauuŭ kommpacmos$$

$$\Theta = f(\partial_{ij}) :$$

$$(i,j) \in [bxb]$$

Направление яркостного контраста θ_{ij} направление, ортогональное образу вектора яркостного градиента

$$\nabla \mathbf{u}_{ij} = \mathbf{G} \mathbf{e}^{-\mathbf{i} \boldsymbol{\varphi}}.$$

Оценка доминантной ориентации термического контраста (ДОТК)

 $\theta^*_{mn}: \Sigma \Delta \theta_{ij} \to \min,$ $\Delta \theta_{ij} = W(\theta_{ij}) \cdot \min\{ |\theta_{ij} - \theta^*_{mn}|, |\theta_{ij} - \theta^*_{mn} - \pi | \},$ $W(\Theta)$

где $\mathbf{W}(\mathbf{ heta}_{ij})$ - весовой коэффициент.

Для оценки статистической значимости ДОТК

используется неравенство Маркова

(Е -допустимая мера разброса).

$$P^*: P\{\Delta \theta_{ij} < \varepsilon\} > 1 - (M\Delta \theta_{ij})/\varepsilon$$

Из требования удовлетворения

точности ${f \epsilon}$ с вероятностью ${f P}^*$

 $P{\Delta \theta_{ij} < \epsilon} > P*$ получаем условие выделения ДОТК

 $\mathbf{M}\Delta \theta_{ij} < (1-\mathbf{P}^*) imes \epsilon$, где $\mathbf{M}\Delta \theta_{ij} = (\Sigma \Delta \theta_{ij}) / \Sigma \mathbf{W}(\theta_{ij})$.

Параметры работы метода. $\epsilon = \pi/4, a = 7 \kappa m, b = 15 \kappa m$

Основные свойства (ДОТК)

Сравнения с полем скоростей поверхностных течений показали, ЧТО ДОТК хорошо коррелируют с направлениями скоростей поверхностных течений. Тем выше скорости, тем выше коэффициенты корреляций.

> ||V||> 30sm/s ||V||>20sm/s ||V||> 5sm/s

47.00 Y₀ 46.00 <u>146.00</u> <u>147.00</u> <u>148.00</u> **Скорости течений и Эллиптическая модель**

Тангенциальная составляющая скорости

Основные свойства (ДОТК)

Для антициклона в Охотском море методом морских маркеров были построены скорости течений, на основе которых определены геометрические характеристики вихря.

Сравнивались радиальная структура скорости течения и доминантных ориентаций контрастов вихря. Для этого рассчитывались расстояния вдоль радиуса от соответствующего вектора скорости до центра вихря и компоненты скорости – (перпендикулярно радиусу) Vt и нормальная (вдоль радиуса) Vn.

- У ДОТК есть наклон к зоне максимальных скоростей (как и ожидалось).
- 2) Сдвиг скорости слева больше чем справа и поэтому доминантные ориентации слева менее отклоняются от вертикали.
- 3) К периферии вихря статистическая значимость ДОТК уменьшается.

Композиция ДОТК за 21-30.09.2003 (позволяет восстановить циркуляцию на всей поверхности акватории за 10 дней)

Для сравнения приведены отдельные изображения с21 по 30 сентября 2003 г., использованные для построения композиции

Structures

Доминанты ориентаций

термических контрастов

Typhoon

Радиус, центр тайфуна и его траектория

154°

22.00

Автоматическое выделение вихрей по ДОТК : Обнаружение вихрей с оценкой их формы

Исходные данные – карты температуры поверхности океана представленные в виде полей доминантных ориентаций температурных контрастов (ДОТК).

Алгоритм – поиск начального приближения центра вихря и формы на основе модели замкнутой циркуляции, расчёт центра и формы линии тока вихря.

1. Поле яркости (температур)

2. Поле градиентов яркости

3. Поле ориентаций контрастов

4. Поле доминантных ориентаций контрастов

Начальное приближение вихря и уточнённый контур

3

Фильтрация ложных объектов и определение устойчивых во времени вихрей

Плотность интегральных линий ДОТК

Пример интегральных линий ДОТК.

Полутоновое ИК-изображение Охотского моря и плотности интегральных линий ДОТК

Спутниковые скорости перемещений по температуре поверхности моря

Японское море 2009 год 15-16 сентября ТПО и скорости перемещения Автоматическое прослеживание перемещений яркостных неоднородностей по последовательности изображений моря с метеорологических спутников в различных диапазонах спектра позволяет в безоблачных случаях строить «плотные» поля наблюдений за течениями

Сущность подхода к расчету скоростей — метод максимальной кросс-корреляции (МКК)

Поиск на 2-м изображении наиболее похожего образа окна-шаблона– выбор того вектора, который отражает перемещение структуры

+a

Функция кросс-корреляции

А,В – яркости пикселей изображений $r(p,q) = \frac{1}{\sigma_A \sigma_B^l} \times \sum_{y} \sum_{x} \{ [A(x,y) - \overline{A}] \cdot [B(x+p,y+q) - \overline{B}] \} = \frac{Cov(p,q)}{\sigma_A \sigma_B^l}.$ Скорость перемещения $f^{+p} - q \qquad v = \frac{\left[(p_{max} \Delta x)^2 + (q_{max} \Delta y)^2 \right]^{1/2}}{\Delta t}$

Угол направления перемещения

$$\theta = \arctan(q_{\max}\Delta y / p_{\max}\Delta x)$$

Отбраковка векторов по критерию «априорной точности»

 Автокорреляция – характеристика похожести

области самой себе

- •Пусть R*=max(R1, R2)/Δt
- при C=max r(p,q)
 - Зададим порог Р

Если R*<Р, перемещение удовлетворяет нас с заданной точностью, иначе - вектор удаляется

Расчет скоростей поверхностных течений на основе критерия сходства Критерий сходства площадок

 $K = r^{\alpha} \cdot E^{\beta} \cdot S^{\gamma}$

Коэффициент корреляции *r(p,q)*

Нормированное рассогласование яркостей Е(р,q):

 $E(p,q) = 1 - \frac{1}{e_1 + e_2} \times \sum_{j} \sum_{i} |[I(i,j) - \bar{I}1] - [I(i+p,j+q) - \bar{I}2]|$ где $e_1 = \sum_{j} \sum_{i} |I(i,j) - \bar{I}1|$ $e_2 = \sum_{j} \sum_{i} |I(i+p,j+q) - \bar{I}2|$ I – яркость Дисперсия S $S(p,q) = \frac{2\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2}$

Падение информативности с ростом скорости

	Диапазоны скоростей (в см/сек)					
	0-10	10-20	20-30	30-60	Более 60	
Всего векторов, построенных экспертом	254	134	38	29	48	
Доли векторов, построившихся автоматически	85%	70%	42%	33%	0%	

Вывод: проводить сравнение спутниковых скоростей со скоростями in situ посредством интерполяции на сетку в общем случае недопустимо.

Принципы сравнения –необходимо:

- 1. Поточечно. Требуется знать изменчивость потока по пространству и времени для учета пространственно-временных рассогласований измерений.
- 2. Сравнивать интегральные характеристики (перепад уровенной поверхности, построенный по скоростям и альтиметру)
- 3. Экстраполяция данных на основе модели изменчивости скорости объекта (вихря, фронтального течения).

Поле скоростей перемещений ледового покрытия моря

Поле скоростей рассчитывалось по перемещению ледовых полей, рассчитанных по временной последовательности спутниковых изображений на основе методики, изложенной в работе - Алексанин А.И., Алексанина М.Г., Карнацкий А.Ю. Автоматический расчет скоростей перемещений ледовых полей \\ Современные проблемы дистанционного зондирования Земли из космоса.2011.Т.8. №2.С.9-17.

Использование критерия априорной оценки точности примерно в 2 раза уменьшило число неверно отбракованных скоростей, при этом в 1.5-2 раза увеличил число отбракованных правильно.

Скорости дрейфа льда в Чукотском море по данным радиометров MODIS (красный цвет) и AMSR-E (синий) за 16 июля 2013 (между изображениями 24 часа).

Оценка точности расчета векторов под облачностью (AMSR-E, сплоченность льда)

Пример. Красным цветом обозначены вектора, построенные путем ручного прослеживания яркостных неоднородностей, синим с помощью нового метода

Распределение ошибки расчета векторов в зависимости от значения критерия априорной точности

Качество расчета дрейфа льда

	допустимое	Временной интервал 24 часа				
	рассогласование < 10	Размер площадки (пиксели) / критерий				
	см/сек	(() 0 12	10-10/014	14x14 /		
ļ		0X0 / U.12	10X10 / 0.14	0.16		
	Количество					
	допустимых по	33,69	45.65	31,57		
	точности векторов (%)					
	Количество		22.80	42,10		
)	допустимых по					
	точности, но	29,34				
	отбракованных					
	векторов (%)					
	Количество отобранных	^K 978	1.08	0		
	некорректных векторов	,10	1.00			
	Средняя ошибка (м/сек)	0.0921	0.0709	0.0396		

Расчет сжатия льда

a) Расчет локального сжатияС^k_{ij}; b) расчет сжатия на основе локальных оценко; c) Карта дрейфа льда и «роза» локальных сжатий в окрестности точки расчета с радиусами R and R+∆R. Красная линия – направление сжатия, зеленая – направления рястяжения.

Пример визуально наблюдаемого сжатия ледового покрова моря на фрагментах изображений MODIS\AQUA: слева — за 5 апреля 2010, справа — за 6 апреля 2010 года. Красные отрезки — статистически значимые величины относительного сжатия. Желтые вектора — скорости ветра,

голубые вектора — автоматически рассчитанные скорости дрейфа. Тонкими желто-красными линиями обозначен допустимый створ ориентации оси сжатия Дφ[−].

Публикации по теме

- 1. Дьяков С.Е., Качур В.А. Построение композиционных карт температуры поверхности океана, ориентированных на сохранение термических структур // Современные проблемы дистанционного зондирования земли из космоса. 2016. Т. 13. № 2. С. 84-94.
- 2. Алексанина М.Г. Автоматическое выделение поверхностных структур океана по инфракрасным данным спутников NOAA // Исслед. Земли из космоса, 1997. № 3. С.44–51.
- Alexanin A.I., Alexanina M.G., Herbek E.E., Ryabov O. Scaling property estimation of Thermal sea surface turbulent structures on NOAA IRimagery // Proc. OCEANS'98, 28 Sept.–1 Oct., 1998. Nice, France, 1998. Vol. 2. P. 1000-1005.
- 4. Алексанин А.И., Алексанина М.Г., Горин И.И. Спутниковые ИК-изображения: от термических структур к полю скоростей // Исследование Земли из космоса, 2001, №2. С.7-15.
- 5. Alexanin A.I., Alexanina M.G. Quantitative analysis of thermal sea surface structures on NOAA IR-images // Proc. CREAMS'2000 Int. Symp., Vladivostok, Russia, 2001. P. 158-165.
- 6. Алексанин А.И., Алексанина М.Г. Спутниковое информационное обеспечение мониторинга океана на Дальнем Востоке. // Коллективная монография «Исследования дальневосточных морей России», М.:Наука, 2007, Том II, с.607-641.
- 7. А.И. Алексанин, А.А. Загуменнов. Автоматической выделение вихрей океана и расчет их формы //«Современные проблемы дистанционного зондирования Земли из космоса», выпуск 5, 2008 г., с.17-21.
- 8. Alexanin A.I., Alexanina M.G., Dyakov S.E., Zagumennov A.A. Satellite Monitoring of Dynamical Structures on Ocean Surface Imagery // Selected Papers of Conference "Fluxes And Structures in Fluids: Physics of Geospheres - 2011". 2012. Moscow. P. 3-9.
- 9. Алексанин А.И., Загуменнов А.А. Проблемы автоматического обнаружения вихрей океана по спутниковым ИК-изображениям// Исследование Земли из космоса. 2011. № 3. С.65-74.
- А.И. Алексанин, М.Г. Алексанина, А.Ю. Карнацкий. Автоматический расчет скоростей поверхностных течений океана по последовательности спутниковых изображений// Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т.10. №2. С.131-142.
- 11. М.Г. Алексанина, А.С. Еременко, А.А. Загумённов, В.А. Качур Вихри в океане и атмосфере: расчёт по спутниковым изображениям // Метеорология и гидрология. 2016. № 9 С.41-54. http://www.mig-journal.ru/archive?id=4255
- 12. Алексанин А.И., Алексанина М.Г., Карнацкий А.Ю. Автоматический расчет скоростей перемещений ледовых полей // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т.8. №2. С.9-17.
- 13. А. И. Алексанин, М. В. Стопкин, В. А. Качур. Автоматический расчет дрейфа льда по данным радиометров AMSR // Исследование Земли из космоса. 2017. №1. С.13-23.
- 14. Aleksanin A.I., Stopkin M.V., Kachur V.A. Automatic computation of ice drift on AMSR radiometers data. // Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 9, pp. 996–1004.
- 15. А. И. Алексанин, М.Г. Алексанина, А.Ю. Карнацкий Расчет сжатия ледяного покрова моря по спутниковым изображениям // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 7. С. 210–224