На правах рукописи

pydputt -

Будрин Сергей Сергеевич

МЕТОД ИССЛЕДОВАНИЯ ПРОЦЕССОВ МОДУЛЯЦИИ И ВОССТАНОВЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ВЕТРОВОГО ВОЛНЕНИЯ НА ОСНОВЕ ОБЩЕЙ ФУНКЦИИ ИЗМЕНЕНИЯ ПЕРИОДА

Специальность 1.6.17 – Океанология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Владивосток – 2022

Работа выполнена в Федеральном государственном бюджетном учреждении науки Тихоокеанский океанологический институт имени В. И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН).

Научный руководитель: Долгих Григорий Иванович - академик РАН, доктор физико-математических наук, директор ФГБУН ТОИ ДВО РАН.

Официальные оппоненты:

Зайцев Андрей Иванович - доктор физикоматематических наук, ФГБУН Специальное конструкторское бюро средств автоматизации морских исследований ДВО РАН (СКБ САМИ ДВО РАН), г. Южно-Сахалинск

Ковалев Дмитрий Петрович - доктор физикоматематических наук, ФГБУН Институт морской геологии и геофизики ДВО РАН (ИМГиГ ДВО РАН), г. Южно-Сахалинск

Ведущая организация:

Департамент теоретической физики и интеллектуальных технологий Института наукоемких технологий и передовых материалов Дальневосточного федерального университета (ДВФУ), г. Владивосток

Защита состоится «10» июня 2022 г. в 13:00 на заседании диссертационного совета 24.1.214.02 при Федеральном государственном бюджетном учреждении науки Тихоокеанском океанологическом институте имени В. И. Ильичева Дальневосточного отделения Российской академии наук по адресу: г. Владивосток, ул. Балтийская, д. 43, 690041

С диссертацией можно ознакомиться в библиотеке ФГБУН ТОИ ДВО РАН и на сайте института https://www.poi.dvo.ru/ru/node/1684

Автореферат разослан «25» марта 2022 г.

Ученый секретарь диссертационного совета Храпченков Ф.Ф. кандидат географических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Ветровое волнение относится к числу важнейших параметров, характеризующих состояние поверхности морей и океанов. Поэтому информация о состоянии волнения затребована широким кругом потребителей, деятельность которых так или иначе связана с морем. первую очередь данная информация важна для В гражданского И рыбопромыслового флота, в последнее время важность прогнозов и информации о волнении приобретает в газовой и нефтяной отраслях, в связи с разработкой шельфовых месторождений и прокладкой нефтяных и газовых трубопроводов по дну моря.

Немаловажную роль волны зыби и ветровые волны оказывают на береговые линии. Ветровые режимы и волны ими вызываемые, влияют на замкнутые морские экосистемы в прибрежных шельфовых областях, что в свою очередь может влиять на местный морской биом и марекультуры.

Прогноз и текущее состояние волнения важно для расчета прочности кораблей, расчета воздействия волн на гидротехнические и гражданские сооружения. В научном плане ценность представляет изучение ряда физических процессов в пограничном слое океана и атмосферы, таких как ветровые течения, обмен количеством движения и энергией между морем и атмосферой.

Наибольшую ценность для практического использования представляет прогноз экстремальных волн в отдельных районах Мирового океана. Для этого необходимо производить постоянный мониторинг основных характеристик поверхностного волнения. Совершенствовать методы мониторинга и развивать физико-математический аппарат для повышения точности прогнозирования опасных гидрофизических явлений. Это дает возможность принять своевременные меры по снижению рисков встречи со штормами и обеспечить безопасность морского судоходства и строительства.

Явление модуляции короткопериодных волн на длинных волнах, в настоящее время, имеет широкое применение в области бесконтактных методах мониторинга морской основном данные процессы используются поверхности. В при расшифровки радиолокационных данных, полученных со спутников, для восстановления профиля взволнованной поверхности. Особый интерес в данных видах исследований представляет изучение внутренних волн (ВВ). Распространяющиеся в океане внутренние волны проявляются на морской поверхности благодаря горизонтальным компонентам орбитальных скоростей вблизи поверхности, которые приводят к вариациям характеристик коротких ветровых волн.

Так же нельзя обойти тему воздействия различных видов волн на земную кору. Деформации верхнего слоя земной коры, вследствие нагружающего воздействия волновых процессов в шельфовой зоне могут вносить существенный вклад в энергию деформационного поля земной коры зоны перехода атмосфера–гидросфера–литосфера, которые могут влиять на процессы подготовки и развития региональных землетрясений. В связи с этим важную роль играет комплексный мониторинг в прибрежных областях морей и океанов не только волновых морских процессов, но и литосферных деформаций, вызванных ими. Так же возникает потребность в простых и быстрых методах обработки и анализа полученных данных, позволяющих дать количественную оценку нагружающих воздействий на земную кору и предоставить полную информацию по основным гидрофизическим характеристикам волновых процессов. Зная пространственно-временное распределение основных характеристик поверхностного волнения можно рассчитывать и анализировать энергетические характеристики воздействия их на верхний слой земной коры и исследовать микросейсмические колебания, вызываемые ими.

Цели работы и задачи исследований

Цель работы состоит в изучении особенностей распространения поверхностных ветровых волн и волн зыби, в частности эффекта изменения периода волнения, связанного с дисперсией, а также выявление общих закономерностей данного эффекта. Исследовать взаимодействие коротких и длинных волн и эффекты модуляции, возникающие при их взаимодействии. Кроме этого ставилась цель рассчитать и дать количественную оценку влияния данных процессов на пространственно-временные вариации основных гидрофизических характеристик поверхностного волнения.

В связи с вышесказанным, были поставлены следующие задачи:

1. По экспериментальным данным, полученным за несколько лет непрерывного мониторинга, найти и проанализировать участки на которых в явном виде присутствует эффект уменьшения периода волнения. По данным участкам выявить общие закономерности изменения периода, обобщить их, вывести общую функцию изменения периода, которая в должной степени могла бы описывать данный процесс.

2. Разработать метод исследования эффектов модуляции ветровых волн и волн зыби на приливных и сейшевых колебаниях, выделить основные виды модуляции при их взаимодействии.

3. С помощью общей функции изменения периода вывести выражения для восстановления по экспериментальным данным пространственно-временного распределения вариаций основных гидрофизических характеристик поверхностного волнения для водоема конечной глубины в приближении мелкой и глубокой воды.

Научная новизна

Общая функция изменения периода волнения, была выведена по уникальным экспериментальным данным, полученным с помощью высокоточных приборов, построенных на лазерно-интерференционных методах. Современные волновые модели хоть и дают достаточно точные прогнозы и описания волновых процессов, но базируются на сложном математическом аппарате, а оптимизация алгоритмов расчета данных моделей хоть и совершенствуются, но по-прежнему оставляют желать лучшего. В связи с этим, главным преимуществом данной функции является простота в использовании и быстрота расчета.

Метод исследования эффектов модуляции волн зыби и ветровых волн на длинных волнах, основанный на регрессионном анализе и общей функции изменения периода, позволят выявлять и описывать модуляции волн зыби на приливных и сейшевых колебаниях. Данный метод применим не только для постобработки экспериментальных данных, но и существует возможность внедрения данного метода в системы анализа данных гидрофизические комплексов в режиме реального времени.

Выведены выражения для восстановления пространственно-временного распределения вариаций основных гидрофизических характеристик поверхностного волнения для водоема конечной глубины в приближении глубокой и мелкой воды. С помощью данных выражений, по экспериментальным данным, можно практически мгновенно восстанавливать пространственно-временное распределение гидрофизических величин, прогнозировать и моделировать данные распределения.

Достоверность результатов, приведенных в диссертации, подтверждена путем многократного и тщательного проведения анализа и расчетов, проверки и апробации методов на экспериментальных данных, сравнения полученных результатов с литературными данными и модельно-теоретическими оценками.

Практическая значимость диссертационной работы соответствует одному из направлений работ в Тихоокеанском океанологическом институте им. В.И. Ильичева ДВО РАН по развитию методов и средств дистанционного исследования атмосферы, океана, литосферы и их взаимодействия, а научные результаты, изложенные в ней, получены при выполнении программ, проводимых ТОИ ДВО РАН: ФЦП «Мировой Океан», грантов РФФИ (03-05-65216 «Изучение законов генерации, динамики и трансформации инфразвуковых колебаний и волн в области переходных зон», № 06-05-64448-а «Энергообмен геосфер зон перехода», № 06-05-96040-р_восток_а «Комплексное изучение взаимодействия волновых полей геосфер на уровне фоновых колебаний», № 05-05-79165К «Организация и проведение экспедиции в пассивно-активном режиме на м. Шульца и на прилегающем шельфе по изучению взаимодействия геосфер»), грантов ДВО, ФЦНТП «Разработка технологии раннего обнаружения предвестников опасных геодинамических процессов в береговой зоне России и способов защиты ее прибрежных территорий» (№ 2005-РП-13.4/001 III очередь).

На защиту выносятся:

1. По экспериментальным данным, полученным с помощью лазерных измерителей вариаций давления гидросферы, выявлены и описаны общие закономерности изменения периода ветрового волнения и волн зыби. На основе данных закономерностей выведена общая функция с высокой точностью описывающая процесс изменения периода волнения, связанный с дисперсией. Функция имеет преимущество в простоте расчетов и описания дисперсии волновых процессов, относительно ранее известных методов.

2. Разработанный метод исследования эффектов модуляции волн зыби и ветровых волн на длинных волнах, основанный на регрессионном анализе и общей функции изменения периода, позволят выявлять и описывать модуляции волн зыби на приливных и сейшевых колебаниях. Представленные выражения с высокой точностью описывают эффекты модуляции данного вида. Расширение спектра ветрового волнения и его дискретность непосредственно связанны с волновой дисперсией и модуляцией ветровых волн на сейшевых колебаниях. Амплитуда гармоник в спектре ветрового волнения зависит от индекса модуляции, а ширина между спектральными максимумами спектра завит от волновой дисперсии.

3. С помощью общей функции изменения периода, по экспериментальным данным, можно восстанавливать пространственно-временное распределение вариаций основных гидрофизических характеристик поверхностного волнения для водоемов конечной глубины в приближении мелкой и глубокой воды.

Публикации

По теме диссертации опубликованы 6 статей в журналах, входящих в перечень российских и зарубежных рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук.

Объем работы

Диссертационная работа состоит из введения, четырех глав, заключения и списка литературы, включающего 105 наименование. Работа содержит 102 страниц текста, 4 таблицы и 40 рисунков.

Нумерация пунктов, формул и рисунков внутри глав сквозная. При этом используется двухуровневая система нумерации. То есть ссылка «рисунок 3.1» означает, что это первый рисунок в третьей главе. Список литературы составлен в порядке упоминания ссылок в тексте диссертации.

Личный вклад автора

Автор принимал участие в конструировании усовершенствований, внесенных в лазерные измерители вариаций давления гидросферы. Занимался обработкой экспериментальных данных, расчетами и созданием графического материала. Принимал активное участие в проведение экспериментальных работ. Анализ и интерпретация данных, представленных в работе, выполнена совместно с Г.И. Долгих.

СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулирована тема диссертации, ее цели и задачи, обоснована ее актуальность, научная новизна, достоверность полученных результатов и их практическая значимость.

В первой главе «Развитие и современное состояние теории ветрового волнения» описывается история развития классической и современной теорий поверхностных волн, основные подходы к изучению и описанию поверхностного волнения, современные методы прогнозирования морского ветрового волнения, волновые модели.

В разделе 1.1 рассматриваются основные этапы развития классической теории поверхностного волнения, приведены основные уравнения и соотношения оказавшие значительное влияние на современное состояние данного вопроса. Представлено дисперсионное уравнение в общем виде, появившееся при решении задачи отклика океана и атмосферы на силу тяжести, где рассматривалось равновесное состояние однородной жидкости постоянной глубины, свободная поверхность которой в начальный момент времени имела небольшое отклонение. Описано волновое уравнение Лагранжа, который провел аналогию между поверхностными волнами и двумерными звуковыми волнами малой амплитуды. Рассматриваются решения уравнений для волн малой амплитуды при условии глубокой и мелкой волны.

В подразделе 1.1.1 приводится решение системы дифференциальных уравнений классической гидродинамики куда входят уравнения движения, расписанные по трем осям координат и уравнение неразрывности. В результате решения, при заданных граничных условиях, выведены дисперсионные соотношения и уравнения основных характеристик поверхностного волнения для волн малой амплитуды в водоемах конечной глубины в приближении глубокой и мелкой воды. Затронуты вопросы решения систем уравнений для волн конечной амплитуды.

Раздел 1.2 посвящен развитию исследований в области прогнозирования ветрового волнения. Приведены ключевые работы, описывающие механизмы генерации, роста и затухания морского ветрового волнения. Рассмотрены статистические и спектральные методы описания ветрового волнения.

В разделе 1.3 рассматривается современное состояние вопроса прогнозирования волнения и волновые модели. Описывается дискретная спектральная модель WAM, основанная на численном интегрировании уравнения переноса спектральной энергии. Рассмотрена модель WAVEWATCH, в основу которой положено численное решение уравнения плотности действия. Описана модель SWAN предназначенная для расчета волн в мелководных прибрежных районах. Последней в разделе рассмотрена спектральнопараметрическая модель AARI-PD2, основанная на гипотезе Хассельмана о существовании устойчивой формы спектра ветрового волнения, контролируемой слабонелинейными взаимодействиями волн

В разделе 1.4 рассматриваются явления модуляции короткопериодных волн на длинных волнах, которые, в настоящее время, имеют широкое применение в области бесконтактных методов мониторинга, таких как: радиолокационное, спутниковое и оптическое (видеонаблюдение) наблюдение за взволнованной поверхностью. Рассмотрена двух масштабная или композитная модель морской поверхности. Описаны методы регистрации внутренних волн с помощью эффектов модуляции, возникающих при взаимодействии их с ветровым волнением. Так же рассматриваются несколько работ в которых описаны механизмы образования аномально высоких волн за счет эфектов модуляции коротких волн на длинных волнах.

В заключении главы приведены выводы, в которых говорится, что хоть нелинейные гидродинамические уравнения могут учитывать множество факторов влияющих на распространение поверхностных волн, таких как диссипация, рефракция, силы поверхностного натяжения и т. д., но при всей развитости математического аппарата, предназначенного для решения уравнений данного вида, требуются большие вычислительные мощности. Описанные волновые модели имеют как плюсы, так и минусы. Практика показала, что модели, которые учитывают больше физических факторов и более совершенную математическую модель, дают наилучшие результаты в описании и прогнозировании волновых процессов. Минусом, В данном случае, является привередливость модели к качеству данных, предоставляемых для расчета, а также сложность расчетов, которые предъявляют высокие требования к вычислительным комплексам. Если приведенные выше требования не выполняются, то преимущество в точности описания и прогнозов за счет применения более совершенных моделей не реализуется.

Во второй главе «Средства измерений» описываются приборы, построенные на лазерно-интерференционных методах и их принцип работы, приводятся обоснования для использования в данной работе приборов, построенных на лазерно-интерференционных методах.

В **разделе 2.1** содержит описание лазерного измерителя вариаций давления гидросферы, построенного на базе модифицированного интерферометра Майкельсона, в котором в качестве источника излучения применён гелий-неоновый частотно стабилизованный лазер. Приведены оптическая схема и устройство прибора. Описан метод его работы.

Раздел 2.2 содержит описание лазерного гидрофона, являющегося усовершенствованной версией лазерного измерителя вариаций давления гидросферы. Приведены оптическая схема и устройство прибора. Описан метод его работы. В заключении второй главы приведены выводы, что на данный момент традиционные методы и приборы, применяемые для измерений ветрового волнения, имеют множество недостатков. Для современных исследований в области изучения волновых процессов водной среды, необходимы широкополосные низкочастотные приборы, обладающие высокой разрешающей способностью и динамическим диапазоном, способные одновременно фиксировать как мощные низкочастотные так более слабые высокочастотные процессы с высокой точностью. Всеми указанными характеристиками обладают описанные выше и построенные на основе лазерно-интерференционных методах приборы.

В третьей главе «Исследование изменчивости периода ветровых волн. Общая функция» представлены экспериментальные данные, полученные с лазерного гидрофона и измерителя вариаций давления гидросферы за несколько лет. В результате проведенных исследований выделены закономерности изменений периода волнения на основе которых выводится общая функция изменения периода.

В разделе 3.1 представлены результаты обработки экспериментальных данных по волнению за несколько лет, полученных с лазерного гидрофона и измерителя вариаций давления гидросферы. Из всего массива данных были выделены более 20 участков с явными признаками убывания периода волнения (Рис. 1а). По спектральным максимумам данных участков, с помощью регрессионного анализа, были построены кривые, описывающие процесс изменения периода (Рис. 1б).

Рисунок 1 – а) спектрограмма записи лазерного гидрофона, сделанная 03.07.2013 г, б) график регрессии построенный по спектральным максимумам, выделенным из спектрограммы сигнала.

Как можно увидеть из рисунка 1(а), процесс изменения периода является нелинейным, о причинах возникновения данной нелинейности будет сказано в последующей главе. С целью дальнейшего анализа были выбраны участки данных, где

период волнения убывает линейно, а длина выбираемых участков составляла бы не менее 10 часов (36000 секунд). Для нахождения общих закономерностей в изменении периода, для каждого исследуемого участка, с помощью регрессионного анализа были выведены линейные функции, в достаточной мере описывающие изменение периода. При этом учитывались значения стандартного отклонения и коэффициента детерминации. На рисунке 2 приведены примеры несколько таких участков с построенными графиками линейной регрессии.

Рисунок 2 – Спектральные максимумы и графики линейной регрессий на выбранных 10-ти часовых участках. а) участок записи, сделанный 03.07.2013 г., б) участок записи, сделанный 12.08.2010 г.

Полученные уравнения регрессии имеют стандартный вид линейной зависимости y(x) = -kx+b, где k это коэффициент наклона прямой, минус перед коэффициентом показывает, что функция убывает, b это начальное значение прямой при аргументе x=0. В результате анализа уравнений регрессии был получен коэффициент наклона линейной функции, который был практически одинаков во всех рассмотренных случаях. Данный коэффициент представляет из себя полное изменение периода на участке ΔT или отношение начального периода участка T_0 к его конечному значению T_1 и равен 2,753.

Далее анализируются участки данных длительностью больше и меньше десяти часов. В результате анализа было выявлено, что коэффициент наклона функции обратно пропорционален длительности исследуемого участка относительно участка длительностью 10 часов. Учитывая выше сказанное, а также знак и степень членов линейных функций регрессии, коэффициент наклона функции можно записать как $K_{10} = -2,753 \cdot 10^{-4}$, а общая функция изменения периода примет следующий вид:

$$\overline{T}(t) = K_{10} \cdot \frac{\Delta T}{\Delta t} \cdot t + T_0 , \qquad (1)$$

где T_0 – это период в начальный момент времени t_0 выбранного участка, T_1 – период в конце участка, ΔT – изменение периода на всем участке, t – время изменения периода волнения.

В заключении главы сделаны выводы о том, что метод описания изменения периода ветрового волнения посредством общей функции, как было показано выше, является приемлемым. К неоспоримым плюсам данного метода можно отнести простота нахождения переменных, построения и вычислений. К минусам можно отнести зависимость данного метода от субъективных факторов, таких как определение начальных параметров, но при этом конечный результат все равно имеет отклонения в приемлемых пределах. Еще к минусам можно отнести ограничения по применению к участкам только с уменьшающимся периодом и имеющим линейный характер. Однако, его простота может иметь неоспоримые преимущества для примерной оценки изменений периода волнения и его описания, перед сложными и трудоемкими математическими моделями, основанными на решении нелинейных дифференциальных уравнениях.

В четвертой главе «Метод исследования эффектов модуляции ветровых волн и волн зыби на приливных и сейшевых колебаниях» приведен пошаговый алгоритм расчета и выявления модуляционных эффектов по экспериментальным данным. Рассмотрены эффекты модуляции ветровых волн на приливных колебаниях и описаны основные виды модуляций поверхностного волнения на сейшах.

В разделе 4.1 на примере экспериментальных данных (Рис. 3а и 3б) продемонстрирован метод выделения модуляционных эффектов. По выделенным значениям спектральных максимумов, сигнала поверхностного волнения, производится вычисление коэффициентов полиноминальной регрессии, с последующим ее построением (Рис. 3в). Коэффициенты вычисляются из системы уравнений, представленных ниже.

$$\begin{cases} b_0 + b_1 t + b_2 t^2 + \dots + b_k t^k = T \\ b_0 t + b_1 t^2 + b_2 t^3 + \dots + b_k t^{k+1} = Tt \\ b_0 t^2 + b_1 t^3 + b_2 t^4 + \dots + b_k t^{k+2} = Tt^2 \\ \dots \\ b_0 t^k + b_1 t^{k+1} + b_2 t^{k+2} + \dots + b_k x^{2k} = Tt^{2k} \end{cases}$$
(4)

где T это значения спектральных максимумов в момент времени $t, b_0 \dots b_k$ — коэффициенты регрессии.

Данную систему можно представить в матричном виде, как AB = C, где

$$A = \begin{pmatrix} 1 & t & t^{2} & \cdots & t^{k} \\ t & t^{2} & t^{3} & \cdots & t^{k+1} \\ t^{2} & t^{3} & t^{4} & \cdots & t^{k+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t^{k} & t^{k+1} & t^{k+2} & \cdots & t^{2k} \end{pmatrix}, B = \begin{pmatrix} b_{0} \\ b_{1} \\ b_{2} \\ \vdots \\ b_{k} \end{pmatrix}, C = \begin{pmatrix} T \\ Tt \\ Tt^{2} \\ \vdots \\ Tt^{2k} \end{pmatrix}$$
(5)

Общее уравнение регрессии можно записать в следующем виде

$$T(t) = b_0 + tb_1 + t^2b_2 + \dots + t^{2k}b_k$$
(6)

Вычитая из полученного выражения функцию изменения периода, мы избавляемся от постоянной составляющей графика (Рис. 3г), представляющей из себя дисперсию,

возникающую при распространении ветровых волн и волн зыби. Таким образом мы получаем абсолютные значения нелинейностей, возникающих при распространении. Общее выражение для функции, описывающей абсолютные значения нелинейностей, можно записать в виде:

 $T(t) = (b_0 + tb_1 + t^2b_2 + \dots + t^{2k}b_k) - \left(K_{10} \cdot \frac{\Delta T}{\Delta t} \cdot t + T_0\right)$

(7)

Рисунок 3 – а) спектрограмма сигнала, б) сигнал, в) спектральные максимумы и график регрессии, построенный по (6), г) абсолютные значения изменения периода волн зыби, выделенные по (7).

В разделе 4.2 рассматриваются модуляции ветрового волнения на приливных колебаниях. Так на рисунке 4 представлен случай модуляции ветрового волнения приливными колебаниями 24 ч.

Рисунок 4 – а) спектрограмма записи; б) изменение периода и амплитуды волнения, связанные с модуляцией на приливных колебаниях

На рисунке 4 в явном виде присутствует модуляция как периода ветрового волнения, так и амплитуды. В результате модуляции в точках максимального значения прилива, концентрируются волны с большим периодом и амплитудой, что соответствует общим представлении об этом процессе. Однако, при обработке данных по приливным колебаниям с периодом 12 ч (Рис. 5), были обнаружены некоторое количество фрагментов, которое не соответствует общепринятым понятиям.

Рисунок 5 – а) сигнал записи; б) изменение периода и амплитуды волнения, связанные с модуляцией на приливных колебаниях

Как можно видеть (Рис. 5а), на записи присутствуют 2 ярко выраженных прилива с периодом 12 часов, однако модуляции периода и амплитуды волнения находятся в противофазе (Рис. 5б), т.е., несмотря на то, что волны с большим периодом находятся в максимальной точке прилива, большей амплитудой обладают волны с меньшим периодом. При этом, у всех похожих случаев есть одна общая особенность, на всех участках присутствуют сейшевые колебания, в данном случае это колебания с периодом 18 мин (Рис. 6), характерные для места где были произведены изменения.

Рисунок 6. – Сейшевые колебания периодом 18 мин, на фоне прилива 12 ч

В связи с вышесказанным, можно предположить, что данные неоднозначные случаи могут возникать из-за сложных модуляционных процессов, связанных с наличием «подмодуляций» нескольких волновых процессов.

В разделе 4.3 рассматривается модуляции ветрового волнения на сейшевых колебаниях. Так при анализе более 30 участков записей, на которых были в явном виде представлены сейшевые колебания одновременно с сильным ветровым волнением, было выделено несколько характерных видов модуляций (Рис. 7): «двух тоновая» и «четырех тоновая».

Рисунок 7. - а) участок записи с двумя сейшевыми колебаниями 18 мин и изменение периода ветрового волнения («двух тоновая» модуляция); б) участок записи с одним сейшевым колебанием 20 мин и изменение периода ветрового волнения («четырех тоновая» модуляция)

Так на одном сейшевом колебании с периодом 18 мин (Рис. 7а) изменение периода ветрового волнения происходит 2 раза, это значит, что на противоположных фронтах сейш происходит процесс сжатия (стрелки вниз) и растяжения (стрелки вверх), тогда как на одном колебании с периодом 20 мин (Рис. 7б), ветровое волнение на фронтах имеет по одному циклу сжатия-растяжения, что в свою очередь и порождает модуляцию.

Данные вид модуляции можно описать с помощью простого уравнения.

$$\Delta T(t) = \sin\left[\left(\frac{2\pi t}{T_{\text{Hec}}} + \alpha_1\right) + m \cdot \sin\left(\frac{2\pi t}{T_{\text{H}^{\text{H}}}} + \alpha_2\right)\right]$$
(8)

где $T_{\text{нес}}$ – период ветрового волнения, $T_{\text{нч}}$ – период модулирующего колебания, m – индекс модуляции.

На рисунке 8 представлен спектр ветрового волнения с периодом 4,8 с, модулированный сейшевыми колебаниями с периодом 18 мин, построенный по экспериментальным данным. Так же на рисунке 6 приведен спектр, рассчитанный с помощью выражения (8), с теми же параметрами волнения и индексом модуляции m=4

Рисунок 8. – а) спектр волнения, построенный по экспериментальным данным; б) спектр волнения, построенный по выражению (8)

В спектрах (Рис. 8), как и в других подобных случаях, присутствуют два характерных максимума. Первый – это основной период ветрового волнения, второй же отвечает за процесс модуляции ветрового волнения на сейшевых колебаниях. При этом основной спектральный максимум всегда остается на своем месте, а положение второго

(модуляционного) может варьироваться в зависимости от индекса модуляции. Таким образом, при анализе спектров экспериментальных данных, по двум характерным максимумам, мы можем точно сказать о наличии сейшевых колебаний и модуляции им ветрового волнения. Однако, изменение периода связанно не только с процессами модуляции ветрового волнения, но и с дисперсией при распространении волн. Для того чтобы учесть дисперсию, подставим в выражение описывающее модуляцию (8) общую функцию изменения периода (1). В результате получаем уравнение, описывающее одновременно и процесс модуляции, и процесс дисперсии ветрового волнения при распространении.

$$T(t) = \sin\left[\left(\frac{2\pi \cdot t \cdot \Delta t}{K_{10} \cdot t \cdot \Delta t + T_0 \cdot \Delta T}\right) + m \cdot \sin\left(\frac{2\pi \cdot t}{T_{\rm HY}} + \alpha\right)\right]$$
(9)

На рисунке 9 представлен спектр ветрового волнения с периодом 5,2 с, полученный по экспериментальным данным, на исследуемом участке при этом есть явно выраженная дисперсия волнения $\Delta T=0,4$ с и присутствуют сейши с периодом 18 мин. Так же на рисунке представлен спектр, рассчитанный по выражению (9), по исходным данным указанным выше.

Рисунок 9. – а) спектр волнения, построенный по экспериментальным данным; б) спектр волнения, построенный по выражению (9)

На спектрах (Рис. 9) присутствуют четыре характерных максимума. Первые два отвечают за модуляцию ветрового волнения на сейшах, а два других за волновую дисперсию. При этом ширина спектра в данном случае не зависит от индекса модуляции. Индекс модуляции отвечает за амплитуду максимумов спектра, а за ширину спектра отвечает изменение периода волнения за счет дисперсии при распространении.

В выводах к четвертой главе говорится, что представленный в работе метод исследований эффектов модуляции, основанный на регрессионном анализе и общей функции изменения периода, показал хорошие результаты в применении к исследованиям модуляции ветровых волн и волн зыби на приливных колебаниях. При исследовании вышеуказанным методом модуляций ветровых волн на сейшах, было выделено несколько основных видов модуляции: «двух тоновая» и «четырех тоновая». Данные виды модуляции хорошо описываются с помощью обычного уравнения частотной модуляции.

Полученное выражения для частотной модуляции с учетом дисперсии хорошо описывает возникновения специфических спектральных максимумов в диапазоне частот ветрового волнения и волн зыби. При сравнении спектров, построенных по экспериментальным данным и спектров, рассчитанных по данному выражению, было выделено четыре характерных спектральных максимума. Первые два отвечают за модуляцию на сейшах, остальные за дисперсию при распространении, индекс модуляции при этом влияет на амплитуду максимумов, а за ширину спектров отвечает изменение периода. При наличии данных максимумов в спектре мы можем говорить не только о присутствии сейшевых колебаний, но и о том, что модулируемый ими волновой процесс имеет не местный характер, а скорее всего пришел из другой точки акватории, так как его период линейно меняется в связи с дисперсией при распространении.

В пятой главе «Восстановление пространственно-временного распределения основных характеристик ветрового волнения» представлены результаты расчетов пространственного распределение по глубине основных характеристик ветрового волнения, привязанных ко времени с помощью общей функции изменения периода.

В разделе 5.1 по фрагменту записи лазерного гидрофона, была построена общая функция изменения периода. Было показано, что для волнового процесса, представленного на данном временном участке, с учетом глубины места постановки прибора, для расчета основных характеристик поверхностного волнения можно использовать приближения для условий мелкой воды. С учетом динамики изменения амплитуды волн и общей функции изменения периода, были выведены выражения для расчета пространственно-временного распределения поля давления, горизонтальных и вертикальных скоростей и смещений частиц жидкости.

$$P(t) = \rho g \cdot a(t) \cdot \frac{\cosh \left[\frac{2\pi (h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}{\cosh \left[\frac{2\pi h}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}, \quad (10)$$

$$u(t) = \frac{2\pi \cdot a(t)}{\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \cdot \frac{\cosh \left[\frac{2\pi (h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}{\sinh \left[\frac{2\pi h}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}, \quad (11)$$

$$\omega(t) = \frac{2\pi \cdot a(t)}{\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \cdot \frac{\sinh \left[\frac{2\pi (h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}{\sinh \left[\frac{2\pi h}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}, \quad (12)$$

$$\zeta(t) = a(t) \cdot \frac{\sinh \left[\frac{2\pi (h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}{\sinh \left[\frac{2\pi (h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \right]}, \quad (13)$$

$$\xi(t) = -a(t) \cdot \frac{\cosh\left[\frac{2\pi(h+z)}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)}\right]}{\sinh\left[\frac{2\pi h}{\sqrt{gh} \cdot \left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)}\right]},$$
(14)

где a(t) – функция описывающая изменение амплитуды волнения, ρ – плотность морской воды, h - глубина места, g – ускорение свободного падения, Δt – длительность исследуемого участка, ΔT – общее изменение периода за Δt , T_0 – начальное значение периода на исследуемом участке, z – глубина расчета характеристики (на поверхности z = 0, у дна z = -h).

Представлены результаты восстановления пространственно-временного распределения основных характеристик волнения в приближении мелкой воды (Рис. 10-12).

Рисунок 10 - Пространственно-временное распределение амплитуды давления на глубине *z* в водоеме конечной глубины *h*=10 м в приближении мелкой воды

Рисунок 11 - Пространственно-временное распределение мгновенных значений горизонтальной (а) и вертикальной (б) скорости частиц на глубине *z* в водоеме конечной глубины *h*=10 м в приближении мелкой воды.

Рисунок 12 - Пространственно-временное распределение значений горизонтального (а) и вертикального (б) смещения частиц на глубине z в водоеме конечной глубины h=10 м в приближении мелкой воды.

В разделе 5.2 приведен фрагмент записи на котором присутствует более высокочастотная составляющая волнения, для которой, с учетом глубины места постановки прибора, для расчета основных характеристик поверхностного волнения можно использовать приближения для условий глубокой воды. С учетом динамики изменения амплитуды волн и общей функции изменения периода, для данного участка, были выведены выражения для расчета пространственно-временного распределения поля давления, горизонтальных и вертикальных скоростей и смещений частиц жидкости.

$$P(t) = \rho g \cdot a(t) \cdot \frac{\cosh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]}{\cosh\left[\frac{4\pi^2 h}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]},$$

$$u(t) = \frac{2\pi \cdot a(t)}{\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \cdot \frac{\cosh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]}{\sinh\left[\frac{4\pi^2 h}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]},$$

$$(16)$$

$$\omega(t) = \frac{2\pi \cdot a(t)}{\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)} \cdot \frac{\sinh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]}{\sinh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2}\right]},$$

$$(17)$$

17

$$\zeta(t) = a(t) \cdot \frac{\sinh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2\right]}{\sinh\left[\frac{4\pi^2 h}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2\right]},$$
(18)
$$\xi(t) = -a(t) \cdot \frac{\cosh\left[\frac{4\pi^2(h+z)}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2\right]}{\sinh\left[\frac{4\pi^2 h}{g\left(\frac{K_{10} \cdot \Delta T \cdot t}{\Delta t} + T_0\right)^2\right]}.$$
(19)

Представлены результаты расчетов пространственно-временного распределения основных характеристик волнения в приближении глубокой воды (рисунок 13-15).

Рисунок 13 - Пространственно-временное распределение амплитуды давления на глубине *z* в водоеме конечной глубины *h*=10 м в приближении глубокой воды

Рисунок 14 - Пространственно-временное распределение мгновенных значений горизонтальной (а) и вертикальной (б) скорости частиц на глубине *z* в водоеме конечной глубины *h*=10 м в приближении глубокой воды.

Рисунок 15 - Пространственно-временное распределение значений горизонтального (а) и вертикального (б) смещения частиц на глубине *z* в водоеме конечной глубины *h*=10 м в приближении глубокой воды

В выводах к четвертой главе говорится, что представленные выражения для восстановления пространственно-временного распределения основных характеристик волнения для водоема конечной глубины в приближении глубокой и мелкой воды, основанные на уравнениях классической гидродинамики и общей функции изменения периода, просты в вычислении и в должной мере описывают распределение гидрофизических величин по глубине, кроме этого могут быть использованы для моделирования волновых процессов в которых происходит изменение периода.

Заключение

По итогам проведенных в рамках диссертации работ, можно выделить следующие основные результаты.

Произведена обработка и анализ экспериментальных данных за 3 года. По выбранным участкам записей выявлены общие закономерности изменения периода ветрового волнения. На основе этих закономерностей была выведена общая функция изменения периода. Сделаны выводы, что данный метод описания является приемлемым. К плюсам данного метода можно отнести простота нахождения переменных, простота построения и вычислений. К минусам можно отнести зависимость данного метода от субъективных факторов, таких как определение начальных параметров, ограничения по применению к участкам только с уменьшающимся периодом и имеющим линейный характер. Однако, его простота может иметь неоспоримые преимущества для примерной оценки изменений периода волнения и его описания.

Представленный в работе метод исследований эффектов модуляции, основанный на регрессионном анализе и общей функции изменения периода, показал хорошие результаты в применении к исследованиям модуляции ветровых волн и волн зыби на приливных колебаниях. С помощью данного метода было показано, что в основном, при модуляции ветровых волн приливами, волны с большим периодом и амплитудой концентрируются в верхних точках прилива. Однако при возникновении посторонних волновых процессов, таких как сейши, модуляция амплитуды волнения могут иметь экстремум в нижней точке прилива, т.е. модуляции периода волнения и его амплитуды будут находится в противофазе.

При исследовании вышеуказанным методом модуляций ветровых волн на сейшах, было выделено несколько основных видов модуляции: «двух тоновая» и «четырех тоновая». Данные виды модуляции хорошо описываются с помощью обычного уравнения частотной модуляции. При сравнении спектров экспериментальных данных и спектра,

19

рассчитанного по формуле частотной модуляции, было выделено два спектральных максимума, первый из которых отвечает за основной период волнения, а второй за процесс модуляции. По этим двум характерным максимумам можно с высокой точностью сказать о наличии сейшевых колебаний, и модуляции ими ветрового волнения, при этом ширина спектра зависит от индекса модуляции, т.е. количества модуляций волнения за один период сейшевого колебания.

Полученное выражения для частотной модуляции с учетом дисперсии, хорошо описывает данные явления. При сравнении спектров экспериментальных данных и спектров, рассчитанных по данному выражению, было выделено четыре характерных спектральных максимума. Первые два отвечают за модуляцию на сейшах, остальные за дисперсию при распространении, индекс модуляции при этом влияет на амплитуду максимумов, а за ширину спектров отвечает изменение периода. При наличии данных максимумов в спектре мы можем говорить не только о присутствии сейшевых колебаний, но и о том, что модулируемый ими волновой процесс имеет не местный характер, а скорее всего пришел из другой точки акватории, так как его период линейно меняется в связи с дисперсией при распространении.

Представлено практическое применение общей функции изменения периода волнения для восстановления пространственно-временного распределения основных характеристик волнения для водоема конечной глубины в приближении глубокой и мелкой воды, основанные на уравнениях классической гидродинамики и данной функции. Представлены графические данные, наглядно представляющие результаты расчетов данных распределений.

Список публикаций по теме диссертации

- Долгих Г.И., <u>Будрин С.С.</u>, Долгих С.Г., Овчаренко В.В., Плотников А.А., Чупин В.А., Швец В.А., Яковенко С.В. Динамика ветровых волн при их движении по шельфу убывающей глубины // ДАН. 2012 г. Том 447. №4. С. 445.
- 2. Долгих Г.И., <u>Будрин С.С.</u> Некоторые закономерности в динамике периодов ветровых волн // ДАН. 2016 г. Том 468. №3. С. 332.
- 3. <u>Будрин С.С.</u>, Долгих Г.И., Долгих С.Г., Ярощук Е.И. Исследования изменчивости периода ветровых волн. // Метеорология и гидрология. 2014 г. №1. С. 72-79.
- <u>Будрин С.С.</u>, Долгих Г.И. Расчёт основных характеристик морских поверхностных гравитационных и ветровых волн с помощью общей функции изменения периода // Подводные исследования и робототехника. 2019. № 1 (27). С. 62-67.
- 5. Dolgikh, G.I., Dolgikh, S.G., <u>Budrin S.S.</u> Fluctuations of the sea level, caused by gravitational and infra–gravitational sea waves. Journal of Marine Science and Engineering, 2020, 8(10), 796. https://doi.org/10.3390/jmse8100796.
- Dolgikh, G.I., Budrin S.S. Method of studying modulation effects of wind and swell waves on tidal and seiche oscillations. Journal of Marine Science and Engineering, 2021, 9(9), 926. https://doi.org/10.3390/jmse9090926.

Будрин Сергей Сергеевич МЕТОД РАСЧЕТА ПРОСТРАНСТВЕННО-ВРЕМЕННОГО РАСПРЕДЕЛЕНИЯ ОСНОВНЫХ ХАРАКТЕРИСТИК ВЕТРОВОГО ВОЛНЕНИЯ НА ОСНОВЕ ОБЩЕЙ ФУНКЦИИ ИЗМЕНЕНИЯ ПЕРИОДА

Специальность 1.6.17 – Океанология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физ.-мат. наук

Подписано в печать 18 марта 2022. Формат 60х84 1/16 Уч.-изд. л. 1,0. Тираж 100 экз. Заказ № 123

Отпечатано с авторского оригинал-макета в ТОИ ДВО РАН 690041, г. Владивосток, ул. Балтийская, д. 43