Andreyev Andrey Grigoryevich

Position
leading researcher
Science degree
Dr.Sc.
Education
  • Far-Eastern State University (1985), oceanologist
  • Ph.D. in geography (1997)
  • Dr.Sc. in geography (2011)
Area of expertise
  • physical oceanology of the North Pacific and seas of Far East (Bering Sea, Sea of Okhotsk and Sea of Japan)
  • chemical oceanology
  • biogeochemistry and carbon cycle in the North Pacific and Far Eastern Seas
Research highlights
  • Significant interannual variability of physical and chemical parameters of seawater in the Pacific Subarctic and the Sea of Okhotsk was shown for the first time. It was found that the main interannual variations in seawater parameters were related to changes in water transport at the borders of large-scale circulations, determined by the winter wind stress vortex, and 18-year tidal cycles. The tendency for temperature increase and dissolved oxygen concentration decrease in the intermediate water layer was shown.
  • The concept of anthropogenic pH was introduced into the practice of Oceanographic research and a method for its calculation was proposed (Andreev et al., 2001). Quantitative characteristics of changes in carbonate parameters in the North Pacific, caused by an increase in carbon dioxide content in the atmosphere, were obtained.
  • Relation between the interannual variability of physical and chemical parameters of seawater in the Sea of Japan and water transfer from the East China Sea through the Korea Strait was identified. It was shown that an increase in anthropogenic stress on waters of the Yangtze river (East China Sea) and an increase in water inflow from the East China Sea led to increase in water temperature, decrease in the concentration of dissolved oxygen and pH (acidification), and the enrichment of the waters of the Sea of Japan with inorganic nitrogen, compared to inorganic phosphorus.
  • Analysis of long-term satellite data allowed to detail the scheme of surface currents in the Tatar Strait (the Northern part of the Sea of Japan). It was shown that significant intra-and inter-annual variations in surface water circulation can be explained by sea level variability between the Korea Strait and the La Perouse and Tsugaru Straits. Anticyclonic / cyclonic water circulation in the southern part of the Tatar Strait is observed during periods of increasing / decreasing of level differences and increasing/decreasing of heated water inflow into the Sea of Japan. The mass presence of fish and shellfish of subtropical origin in the Tatar Strait in autumn of 2011 and 2015 was associated with an inflow of subtropical waters into the Northern part of the Sea of Japan.
  • Seasonal and interannual variability of water exchange between the Bering Sea and the Pacific through the Kamchatka and other Straits was studied and the reasons for this variability were identified.
  • The influence of the Alaska jet stream on water exchange between the Pacific and the Sea of Okhotsk through the Straits of the Kuril Chain was studied. It was found that the strengthening of the Alaska jet stream into the Pacific strengthens the meridional water flows of Krusenstern and Fourth Kuril Straits, connecting the Sea of Okhotsk with the Pacific, and is accompanied by an increase in temperature and decrease in the ice cover of the Sea of Okhotsk in the spring period, which influences the biomass of large phytoplankton and Pollock population.
  • Mesoscale water circulation in the area of the East Sakhalin current (the Western part of the Sea of Okhotsk) was studied. It was found that the anticyclonal/cyclonic wind vortex over the Sea of Okhotsk and, respectively, the winds of the Southern/Northern directions in the Western part of the Sea of Okhotsk lead to the formation of a mesoscale cyclonic/anticyclonal water circulation in July/August / October / December. It was shown that the origin of waters in mesoscale cyclones (with relatively high salinity and low temperature) was associated with coastal upwelling and tidal mixing. Waters in anticyclones (with relatively low salinity) are formed in the North-Western part of the Sea of Okhotsk under the influence of the Amur river. In October-December, under the influence of the winter monsoon, the inflow of water with reduced salinity towards the Eastern coast of Sakhalin island increases, which contributes to the formation of mesoscale anticyclones. It was shown that the high primary production and concentration of chlorophyll a, observed in summer in the area of the shelf and coastal slope of the North-Eastern part of Sakhalin, were confined to the centers of mesoscale cyclones.
  • Water dynamics in the area of Navarinsky canyon (Bering Sea) for the period from 1993 to 2016 was studied. It was found that the intensity of anticyclonal vortices in the study area in spring and summer was determined by the wind regime in March-April. An increase in the southern and decrease of the western wind friction stress in the Central part of the Bering Sea leads to the inflow of shelf waters with low temperature and reduced salinity into the deep sea and formation of mesoscale anticyclonal vortices along the continental slope. The strengthening of the North-West flow of the Bering Sea slope current leads to an increase in temperature of the sub-bottom layer of the outer shelf and a decrease in the ice cover of the Bering sea. Increase of winds of the Eastern directions in spring and North-West outer shelf waters transfer are accompanied by an increase in catch/abundance of Pollock in the West Bering Sea zone in summer and early autumn.
Research fellowships

Member of the working group (Russian representative) on climate impact on the carbon cycle in seawater (Section on Carbon and Climate), PICES

Awards

Award of the Oceanographic Society of Japan (JOS)  for paper “The effects of the anticyclonic eddies on the water masses, chemical parameters and chlorophyll distributions in the Oyashio Current region”.

Key publications
  • Андреев А.Г., Жабин И.А. Антропогенный CO2 в промежуточных водах северо-западной части Тихого океана // Океанология. 1999.Т. 39. С. 376-382.
  • Андреев А.Г. Изменение параметров карбонатной системы поверхностных вод в северо-западной части Тихого океана // Океанология. 1999. Т. 39. С. 861-866.
  • Oh D.-C., M.-K. Park, S.-H. Choi, D.-J. Kang, S. Y. Park, J. S. Hwang, A. Andreev, G. H. 4. Hong, K.-R. Kim. The Air-Sea Exchange of CO2 in the East Sea (Japan Sea) // Journal of Oceanography. 1999. V. 55. P. 157-169.
  • Андреев А.Г., Жабин И.А. Распределение фреонов и растворенного кислорода в промежуточных водах Охотского моря //Метеорология и гидрология. 2000. No. 1. C. 61-69.
  • Andreev A., Kusakabe M. Interdecadal variability in DO in the intermediate water layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea) // Geophys. Res. Lett. 2001. V. 28. P. 2453–2456. Andreev A., Honda M., Kumamoto Y. et al. Excess CO2 and pH excess in the intermediate water-layer of the Northwestern Pacific // J. Oceanography. 2001. V. 57. P. 177-188.
  • Andreev A., Watanabe S. Temporal changes in dissolved oxygen of the intermediate water in the subarctic North Pacific // Geophys. Res. Lett. 2002. V. 29. doi: 10.1029/2002GL15021.
  • Andreev A., Kusakabe M., Honda M. et al. Vertical fluxes of nutrients and carbon through the halocline in the Western Subacrtic Gyre calculated by mass balance // Deep-Sea Res. II. 2002. V. 49. P. 5577-5593.
  • Kusakabe M., Andreev A., Lobanov V. et al. The effects of the anticyclonic eddies on the water masses, chemical parameters and chlorophyll distributions in the Oyashio Current region // J. of Oceanography. 2002. V. 58. P. 691-701.
  • Chen C.-T., Andreev A., Kim K.-R. Roles of Continental shelves and Marginal Seas in the Biogeochemical Cycles of the North Pacific // J. of Oceanography. 2004. V. 60. P. 17-44.
  • Andreev A.G., Baturina V.I. Impacts of the tides and atmospheric forcing variability on dissolved oxygen in the subarctic North Pacific // J. of Geophysical Research. 2006. V. 111. C05007. doi: 10.1029/2005JC003277.
  • Андреев А.Г., Шевченко Г.В. Межгодовая изменчивость переноса вод Восточно-Камчатским и Восточно-Сахалинским течениями и их влияние на концентрацию растворенного кислорода в Охотском море и тихоокеанской субарктике // Метеорология и Гидрология. 2008. No. 10. C. 70-79.
  • Андреев А.Г., Чен Ч.-Т.A., Ватанабэ Ш. Методика расчета и распределение антропогенного изменения рН в тихоокеанской субарктике // Океанология. 2009. Т. 49. С. 483-493.
  • Andreev A.G. Interannual variations of the East-Kamchatka and East-Sakhalin Currents transport and its impact on the temperature and chemical parameters in the Okhotsk Sea // PICES Scientific Report. 2009. V. 36. Р. 37-43.
  • Андреев А.Г., Чен Ч.-Т.A., Середа Н.А. Распределение карбонатных параметров в водах Залива Анадырь и западной части Чукотского моря // Океанология. 2010. Т. 50. С. 43-55.
  • Андреев А.Г. Межгодовая изменчивость расхода вод через Корейский/Цусимский проливы и ее влияние на содержание растворенного кислорода в водах Японского моря // Метеорология и Гидрология. 2010. No. 9. С. 74-85. Andreev A.G., Pavlova G. Yu. Okhotsk Sea // Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. N.-Y.: Springer-Verlag, 2010. P. 394-406.
  • Prants, S.V., Andreev, A.G., Budyansky, M.V., Uleysky, M. Impact of mesoscale eddies on surface flow between the Pacific Ocean and the Bering Sea across the Near Strait // Ocean Modelling. 2013. V. 72. P. 143-152.
  • Андреев А.Г. Межгодовые изменения параметров морской воды и концентрации хлорофилла-а в Японском море в осенний период // Метеорология и гидрология. 2014. No. 8. С. 55-65.
  • Prants, S.V., Andreev, A.G., Uleysky, M.Y., Budyansky, M.V. Lagrangian study of temporal changes of a surface flow through the Kamchatka Strait // Ocean Dynamics. 2014. V. 64. P. 771-780.
  • Жабин И.А., Андреев А.Г. Взаимодействие мезомасштабных и субмезомасштабных вихрей в Охотском море по данным спутниковых наблюдений // Исследование Земли из космоса. 2014. No. 4. С. 75-86.
  • Prants, S.V., Andreev, A.G., Budyansky, M.V., Uleysky, M.Y. Impact of the Alaskan Stream flow on surface water dynamics, temperature, ice extent, plankton biomass, and walleye pollock stocks in the eastern Okhotsk Sea// Journal of Marine Systems. 2015. V. 151. P. 47-56.
  • Андреев А.Г. Мезомасштабная циркуляция вод в районе Восточно-Сахалинского течения (Охотское море) // Исследование Земли из космоса. 2017. No. 2. С. 3-12.
  • Prants S.V., Andreev A.G., Uleysky M.Yu., Budyansky M.V. Mesoscale circulation along the Sakhalin Island eastern coast // Ocean dynamics. 2017, 47–58.
  • Андреев А.Г. Особенности циркуляции вод в южной части Татарского пролива // Исследование Земли из космоса. 2018. No. 1. С. 3-11.
  • Prants, S.V., Andreev, A.G., Budyansky, M.V., Uleysky, M.Y. Alaskan Stream flow in the eastern subarctic Pacific and the eastern Bering Sea and its impact on biological productivity // Biogeosciences. 2018.
  • Andreev A.G., M.V. Budyansky, M.Yu. Uleysky, S.V. Prants. Mesoscale dynamics and walleye pollock catches in the Navarin Canyon area of the Bering Sea // Ocean dynamics. 2018.
Advanced research

Study of water dynamics' influence on the bioresources of the Bering Sea, Sea of Okhotsk and Sea of Japan.

Involvement in national and international projects

Project of the Russian Scientific Foundation no. 16-17-100251

Contributions to conferences
  • PICES meetings (Hakodate (Japan), 2000; Victoria (Canada), 2001; Qingdao (China),2002; Honolulu (USA), 2004; Vladivostok, 2005; Yokohama (Japan), 2006; Dalian (China), 2008; Khabarovsk, 2011; Hiroshima (Japan), 2012; San Diego (USA), 2016; Vladivostok, 2017)
  • JGOFS conferences (Nagoya (Japan), 2000; Bergen (Norway), 2001), Ocean Sciences Meeting (Honolulu (USA), 2002), North Pacific CO2 Data Synthesis (Tsukuba (Japan), 2000; Seattle (USA), 2004; Tokyo (Japan), 2005)
  • Japan Oceanography Ocean Science Meetings (Tokyo, Hakodate, Fukuoka (Japan); 1999-2002, 2007), International Symposium “Low Carbon Society and Global Change” (Sapporo (Japan), 2009)
Additional information
  • Member of the dissertation Council on Oceanology
  • Participation in 19 Russian, international and foreign marine expeditions within the framework of CREAMS, WestPac, JGOFS and WOCE programs
  • Knowledge of modern methods of ocean research
  • Reviewing articles in leading scientific journals on Oceanology (Continental Shelf Research, Deep- Sea Research, J. of Oceanography, Marine Chemistry, Ocean Dynamics, Progress in Oceanography)